
JAVA JARSIGNER
Integration Guide

Applicable Devices:
KMES Series 3

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION PROPRIETARY TO FUTUREX, LP. ANY UNAUTHORIZED USE, DISCLOSURE, OR
DUPLICATION OF THIS DOCUMENT OR ANY OF ITS CONTENTS IS EXPRESSLY PROHIBITED.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 2 of 25

TABLE OF CONTENTS

[1] DOCUMENT INFORMATION 3

[1.1] DOCUMENT OVERVIEW 3

[1.2] ABOUT JAVA JARSIGNER 3

[2] PREREQUISITES 5

[3] INSTALL FUTUREX PKCS #11 (FXPKCS11) 6

[3.1] INSTRUCTIONS FOR INSTALLING THE FXPKCS11 MODULE USING FXTOOLS IN WINDOWS 6

[3.2] INSTRUCTIONS FOR INSTALLING THE FXPKCS11 MODULE IN LINUX 7

[4] SETTING SYSTEM ENVIRONMENT VARIABLES FOR THE JAVA LIBRARY 8

[5] INSTALL FXJCE FILES 9

[6] REGISTERING THE JAVA PROVIDER 10

[7] KMES SERIES 3 CONFIGURATION 11

[7.1] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE COMPUTER WHERE JARSIGNER AND FXPKCS11 ARE INSTALLED 11

[7.2] GENERAL KMES CONFIGURATIONS FOR COMMUNICATION BETWEEN JARSIGNER/FXPKCS11 AND THE KMES SERIES 3 15

[8] EDIT THE FUTUREX PKCS #11 CONFIGURATION FILE 20

[8.1] DEFINE CONNECTION INFORMATION 20

[9] JARSIGNER COMMAND EXAMPLES 22

[9.1] SIGNING A JAVA ARCHIVE (JAR) FILE 22

[9.2] VERIFYING THE SIGNATURE OF A SIGNED JAR FILE 23

APPENDIX A: XCEPTIONAL SUPPORT 24



INTEGRATION GUIDE| JAVA JARSIGNER

Page 3 of 25

[1] DOCUMENT INFORMATION

[1.1] DOCUMENT OVERVIEW
The purpose of this document is to provide information regarding the configuration of the Futurex KMES Series
3 with Java Jarsigner using PKCS #11 libraries. For additional questions related to your KMES Series 3 device, see
the relevant user guide. 

[1.2] ABOUT JAVA JARSIGNER
From Oracle's documentation website: "Java's jarsigner tool is used for two purposes:

1. To sign Java ARchive (JAR) files.

2. To verify the signatures and integrity of signed JAR files.

The JAR feature enables the packaging of class files, images, sounds, and other digital data in a single file for
faster and easier distribution. A tool named jar enables developers to produce JAR files. (Technically, any zip
file can also be considered a JAR file, although when created by the jar command or processed by the
jarsigner command, JAR files also contain a META-INF/MANIFEST.MF file.)

A digital signature is a string of bits that is computed from some data (the data being signed) and the private key
of an entity (a person, company, and so on). Similar to a handwritten signature, a digital signature has many
useful characteristics:

l Its authenticity can be verified by a computation that uses the public key corresponding to the private key
used to generate the signature.

l It cannot be forged, assuming the private key is kept secret.

l It is a function of the data signed and thus cannot be claimed to be the signature for other data as well.

l The signed data cannot be changed. If the data is changed, then the signature cannot be verified as
authentic.

To generate an entity's signature for a file, the entity must first have a public/private key pair associated with it
and one or more certificates that authenticate its public key. A certificate is a digitally signed statement from
one entity that says that the public key of another entity has a particular value.

The jarsigner command uses key and certificate information from a keystore to generate digital signatures
for JAR files. A keystore is a database of private keys and their associated X.509 certificate chains that
authenticate the corresponding public keys. The keytool command is used to create and administer keystores.

The jarsigner command uses an entity's private key to generate a signature. The signed JAR file contains,
among other things, a copy of the certificate from the keystore for the public key corresponding to the private
key used to sign the file. The jarsigner command can verify the digital signature of the signed JAR file using
the certificate inside it (in its signature block file).



INTEGRATION GUIDE| JAVA JARSIGNER

Page 4 of 25

The jarsigner command can generate signatures that include a time stamp that lets a systems or deployer
(including Java Plug-in) to check whether the JAR file was signed while the signing certificate was still valid. In
addition, APIs allow applications to obtain the timestamp information.

At this time, the jarsigner command can only sign JAR files created by the jar command or zip files. JAR files
are the same as zip files, except they also have a META-INF/MANIFEST.MF file. A META-INF/MANIFEST.MF
file is created when the jarsigner command signs a zip file.

The default jarsigner command behavior is to sign a JAR or zip file. Use the -verify option to verify a
signed JAR file.

The jarsigner command also attempts to validate the signer's certificate after signing or verifying. If there is
a validation error or any other problem, the command generates warning messages. If you specify the -strict
option, then the command treats severe warnings as errors. See Errors and Warnings."

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html#CCHBFBIC


INTEGRATION GUIDE| JAVA JARSIGNER

Page 5 of 25

[2] PREREQUISITES

Supported Hardware:

l KMES Series 3, version 6.1.4.x and above, with the PKCS11 license enabled

Supported Operating Systems:

l Windows 7 and above

l Linux

Other:

l Java Development Kit (JDK) 8



INTEGRATION GUIDE| JAVA JARSIGNER

Page 6 of 25

[3] INSTALL FUTUREX PKCS #11 (FXPKCS11)
In a Windows environment, the easiest way to install the Futurex PKCS #11 module is using FXTools. FXTools can
be downloaded from the Futurex Portal. In a Linux environment you simply need to download a tarball of the
FXPKCS11 binaries from the Futurex Portal, and then extract the tar file locally wherever you want the
application to be installed on your system. Step by step installation instructions for both of these scenarios are
provided in the following subsections:

[3.1] INSTRUCTIONS FOR INSTALLING THE FXPKCS11 MODULE USING FXTOOLS IN WINDOWS
l Run the FXTools Installer as an administrator

FIGURE: FUTUREX TOOLS SETUP WIZARD

By default, all tools are installed on the system. A user can overwrite and choose not to install certain modules.

l Futurex Client Tools – Command Line Interface (CLI) and associated SDK for both Java and C.
l Futurex CNG Module – The Microsoft Next Generation Cryptographic Library.
l Futurex Cryptographic Service Provider (CSP) – The legacy Microsoft cryptographic library.
l Futurex EKMModule – The Microsoft Enterprise Key Management library.
l Futurex PKCS #11 Module – The Futurex PKCS #11 library and associated tools.
l Futurex Secure Access Client – The client used to connect a Futurex Excrypt Touch to a local laptop, via

USB, and a remote Futurex device.

After starting the installation, all noted services are installed. If the Futurex Secure Access Client was selected,
the Futurex Excrypt Touch driver will also be installed (Note this sometimes will start minimized or in the
background).

After installation is complete, all services are installed in the C:\Program Files\Futurex\ directory. The
CNG Module, CSP Module, EKMModule, and PKCS #11 Module all require configuration files that are located in
their corresponding directory with a .cfg extension. In addition, the CNG and CSP Modules are registered in



INTEGRATION GUIDE| JAVA JARSIGNER

Page 7 of 25

the Windows Registry (HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider) and are installed in the
C:\Windows\System32\ directory.

[3.2] INSTRUCTIONS FOR INSTALLING THE FXPKCS11 MODULE IN LINUX
Extract the tarball file (fxpkcs11-linux-x.xx-xxxx.tar) in the desired working directory.

NOTE: To make the Futurex PKCS #11 module accessible system-wide, it needs to be placed into the
/usr/local/bin directory by an administrative user. If the module only needs to be utilized by the current
user, then installing into $HOME/bin would be the appropriate location.

The extracted content of the tar file is a single fxpkcs11 directory. Inside of the fxpkcs11 directory are the
following files and directories (Only files/folders that are relevant to the installation process are included
below):

l fxpkcs11.cfg -> FXPKCS11 configuration file
l x86/ - This folder contains the module files for 32-bit architecture
l x64/ - this folder contains the module files for 64-bit architecture

Within both the x86 and x64 directories are two directories. One called OpenSSL-1.0.x and the other called
OpenSSL-1.1.x. Both of these OpenSSL directories contain the FXPKCS11 module files, built with the
respective OpenSSL versions. These files are listed below, with short descriptions of each:

l configTest -> Program to test configuration and connection to the HSM
l libfxpkcs11.so -> FXPKCS11 Library File
l PKCS11Manager -> Program to test connection and manage the HSM through the FXPKCS11 library

System environment variables need to be defined for the FXPKCS11 library and the FXPKCS11 configuration file.
To do so, open the /etc/profile file in a text editor and add the following two lines at the bottom:

export FXPKCS11_MODULE=/usr/local/bin/fxpkcs11/libfxpkcs11.so
export FXPKCS11_CFG=/usr/local/bin/fxpkcs11/fxpkcs11.cfg

NOTE: The locations defined above for the FXPKCS11 library and FXPKCS11 configuration files need to be
specific to where they are installed on your system.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 8 of 25

[4] SETTING SYSTEM ENVIRONMENT VARIABLES FOR THE JAVA LIBRARY
System environment variables must be defined for the location of the Java library. The variable settings are:

l JAVA_HOME = path to JDK installation directory
l JRE_HOME = path to JDK installation directory
l PATH = ; (add all the paths described above)

Windows example:

l JAVA_HOME = C:\Program Files\Java\jdk1.8.0_301
l JRE_HOME = C:\Program Files\Java\jdk1.8.0_301
l PATH = …; C:\Program Files\Java\jdk1.8.0_301; C:\Program Files\Java\jdk1.8.0_301\bin;

FIGURE: EXAMPLE SYSTEM VARIABLE SETTINGS

Linux example:

To define system environment variables for path to the JDK installation directory in Linux, open the
/etc/profile file in a text editor and add the following lines at the bottom:

JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre
JRE_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre

PATH=$PATH:$JAVA_HOME/bin

export JAVA_HOME
export JRE_HOME
export PATH



INTEGRATION GUIDE| JAVA JARSIGNER

Page 9 of 25

[5] INSTALL FXJCE FILES
The Java provider relies on a JNI (Java Native Interface) library, which must be in the server’s $JAVA_
HOME/jre/lib directory. It also requires a provider, which should be saved in the $JAVA_HOME/jre/lib/ext
directory.

Extract the files from the zip file (fxjce-OperatingSystem_x.xx.zip) corresponding to the operating system in the
working folder. Examples for each operating system are below:

Linux: 

libfxjp11.so (library) -> /usr/lib/jvm/java-8-openjdk-amd64/jre/lib/ext

sunpkcs11-fx.jar (extension) -> /usr/lib/jvm/java-8-openjdk-amd64/jre/lib/ext

Windows:

fxjp11.dll (library) -> C:\Program Files\Java\jdk1.8.0_301\jre\lib\ext

sunpkcs11-fx.jar (extension) -> C:\Program Files\Java\jdk1.8.0_301\jre\lib\ext



INTEGRATION GUIDE| JAVA JARSIGNER

Page 10 of 25

[6] REGISTERING THE JAVA PROVIDER
The Java provider must be registered before it can be used. To register, modify the java.security file on the
system (typically located in $JAVA_HOME/jre/lib/security). Append a line similar to the following to the provider
list in the java.security file:

security.provider.11=fx.security.pkcs11.SunPKCS11

FIGURE: SAMPLE JAVA.SECURITY FILE



INTEGRATION GUIDE| JAVA JARSIGNER

Page 11 of 25

[7] KMES SERIES 3 CONFIGURATION
The first half of this section will cover the steps needed to configure TLS communication between the KMES
Series 3 and the computer where Java Jarsigner and the Futurex PKCS #11 library are installed. The second half
of this section will cover general KMES configurations that need to be made for the KMES to provide code
signing and verification functionality for Java ARchive (JAR) files.

[7.1] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE COMPUTER
WHERE JARSIGNER AND FXPKCS11 ARE INSTALLED

[7.1.1] Create a Certificate Authority (CA)

1. Log in to the KMES Series 3 application interface with the default Admin identities.

2. Select Certificate Authorities in the left menu, then click the Add CA... button at the bottom of the page.

3. In the Certificate Authority dialog, enter a name for the Certificate Container, leave all other fields as the
default values, then click OK.

4. The Certificate Container that was just created will be listed now in the Certificate Authorities menu.

5. Right-click on the Certificate Container and select Edit.... In the Certificate Authority dialog, check the box
that says, "Can be used for PKI authentication", then click OK to save.

6. Right-click on the Certificate Container again and select Add Certificate -> New Certificate...

7. In the Subject DN tab, set a Common Name for the certificate, such as "System TLS CA Root".

8. In the Basic Info tab, change the Major key to the PMK. All other settings can be left as the default values.

9. In the V3 Extensions tab, select the "Example Certificate Authority" profile, then click OK.

10. The root CA certificate will be listed now under the previously created Certificate Container.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 12 of 25

[7.1.2] Generate a CSR for the System/Host API connection pair

1. Go to Configuration -> Network Options.

2. In the Network Options dialog, select the TLS/SSL Settings tab.

3. Under the System/Host API connection pair, uncheck "Use Futurex certificates", then click Edit... next to
PKI keys in the User Certificates section.

4. In the Application Public Keys dialog, click Generate...

5. There will be a warning stating that SSL will not be functional until new certificates are imported. Select
Yes if you wish to continue.

6. In the PKI Parameters dialog, change the Encrypting key to the PMK, then change the Key Size to 2048
and click OK.

7. It should show that a PKI Key Pair is loaded now in the Application Public Keys dialog. If this is the case,
click Request...

8. In the Subject DN tab, set a Common Name for the certificate, such as "KMES".

9. In the V3 Extensions tab, select the "Example TLS Server Certificate" profile.

10. In the PKCS #10 Info tab, select a save location for the CSR, then click OK.

11. There should be a message stating that the certificate signing request was successfully written to the file
location that was selected. Click OK.

12. Click OK again to save the Application Public Keys settings.

13. In the main Network Options dialog, it should now say "Loaded" next to PKI keys for the System/Host API
connection pair.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 13 of 25

[7.1.3] Sign the System/Host API CSR

1. Go to the Certificate Authoritiesmenu.

2. Right-click on the root CA certificate created in section 2.1.1, then select Add Certificate -> From
Request...

3. In the file browser, find and select the CSR that was generated for the System/Host API connection pair.

4. Once loaded, none of the settings need to be modified for the certificate. Click OK.

5. The signed System/Host API certificate should now show under the root CA certificate on the Certificate
Authorities page.

[7.1.4] Export the root CA and signed System/Host API TLS certificates

1. Right-click on the root CA certificate, then select Export -> Certificate(s)...

2. Change the encoding to PEM. Then click Browse... and select a save location, as well as a name for the
export file.

3. There should be a message stating that the file was successfully written to the location that was selected.
Click OK.

4. Right-click on the signed System/Host API certificate, then select Export -> Certificate(s)...

5. Change the encoding to PEM. Then click Browse... and select a save location, as well as a name for the
export file.

6. There should be a message stating that the file was successfully written to the location that was selected.
Click OK.

[7.1.5] Load the exported TLS certificates into the System/Host API connection pair

1. Go to Configuration -> Network Options.

2. In the Network Options dialog, select the TLS/SSL Settings tab.

3. Click Edit... next to Certificates in the User Certificates section.

4. Right-click on the System/Host API SSL CA X.509 Certificate Container, then select Import...

5. Click Add... at the bottom of the Import Certificates dialog.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 14 of 25

6. In the file browser, find and select both the root CA certificate and the signed System/Host API certificate,
then click Open. The certificate chain should appear as shown below:

7. Click OK to save the changes. In the Network Options dialog, the System/Host API connection pair should
show "Signed loaded" next to Certificates in the User Certificates section, as shown below:

8. Click OK to save and exit the Network Options dialog.

[7.1.6] Generate a signed client TLS certificate for Jarsigner/FXPKCS11

1. Go to the Certificate Authoritiesmenu.

2. Right-click on the root CA certificate and select Add Certificate -> New Certificate...



INTEGRATION GUIDE| JAVA JARSIGNER

Page 15 of 25

3. In the Subject DN tab, set a Common Name for the certificate, such as "Jarsigner".

4. All settings in the Basic Info tab can be left as the default values.

5. In the V3 Extensions tab, select the "Example TLS Client Certificate" profile, then click OK.

6. The signed Jarsigner certificate will be listed now under the root CA certificate.

[7.1.7] Allow export of certificates using passwords

1. Navigate to Configuration -> Options.

2. Check the box next to the first menu option, which says, "Allow export of certificates using passwords".

3. Click Save.

[7.1.8] Export the signed Jarsigner client TLS certificate as a PKCS #12 file

1. Go to the Certificate Authoritiesmenu.

2. Right-click on the signed Jarsigner certificate, then select Export -> PKCS12...

3. In the Export PKCS12 dialog, select Export Selected under Export Options, then click Next >.

4. Specify a password for the PKCS #12 file, then click Next >.

5. Click Finish.

NOTE: The export_pkcs12.p12 file will be saved in the root directory of either the USB or SFTP mount point,
depending on which is configured. This PKCS #12 file needs to be moved to the computer where jarsigner is
installed. In a later section, it will be configured in the Futurex PKCS #11 configuration file and used for TLS
communication with the KMES Series 3.

[7.2] GENERAL KMES CONFIGURATIONS FOR COMMUNICATION BETWEEN
JARSIGNER/FXPKCS11 AND THE KMES SERIES 3

[7.2.1] Enable the required Host API commands

1. Go to Configuration -> Host API Options.

2. Enable the following commands:



INTEGRATION GUIDE| JAVA JARSIGNER

Page 16 of 25

l ECHO - Communication Test/Retrieve Version

l RAFA - Enumerate issuance policies

l RAGA - Retrieve issuance policy details

l RAGO - Retrieve Request (Hash Signing)

l RAUO - Upload Request (Hash Signing)

l RKCP - Get Command Permissions

l RKLN - Lookup Objects

l RKLO - Login User

l RKRK - Retrieve Generated Keys

l TIME - Set Time

3. Click Save.

[7.2.2] Create a Jarsigner User Group with the required permissions

1. Select Users in the left menu, then click the Add Group... button at the bottom of the page.

2. Specify a name for the group, such as "Jarsigner", then ensure that the settings below are selected.

3. In the Permissions tab, ensure that only the following permissions are selected:

l Manage certificates -> Export

l Manage certificates -> Upload

l Manage keys (top-level permission only)

4. Click OK to save.

5. Disregard the warning that there are only 0 users currently in the group. Click OK.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 17 of 25

[7.2.3] Create a single login user within the Jarsigner User Group

1. On the Users page, right-click on the Jarsigner User Group and select Add -> User...

2. In the Basic Info tab, set a user name and password for the user.

3. Click OK, and you should see the new user listed under the Jarsigner User Group, as shown below:

[7.2.4] Create a Signing Approval Group and give the Jarsigner User Group permissions to use it

1. Select Signing Approval in the left menu, then click the Add Approval Group... button at the bottom of the
page.

2. Set a name for the Approval Group, such as "Jarsigner", then click OK to save.

3. Right-click on the Jarsigner Approval Group, then select Permission...

4. Give the Jarsigner User Group the Use permission, then click OK.

[7.2.5] Create a Code Signing certificate

This subsection will describe two different methods that can be used to issue a code signing certificate.

Issued by a CA on the KMES

1. Go to the Certificate Authoritiesmenu and click the Add CA... button at the bottom of the page.

2. In the Certificate Authority dialog, enter a name for the Certificate Container, such as "Jarsigner". Set the
owner field to the group that contains the user created in section 7.2.3, then click OK. The new Certificate
Container will be listed now in the Certificate Authorities menu.

3. Right-click on the Jarsigner Certificate Container and select Add Certificate -> New Certificate...

4. In the Subject DN tab, set a Common Name for the certificate, such as "Root".

5. In the Basic Info tab, change the Major key to the PMK. All other settings can be left as the default values.

6. In the V3 Extensions tab, select the "Example Certificate Authority" profile, then click OK. The Root CA
certificate will be listed now under the "Jarsigner" Certificate Container.

7. Right-click on the Root CA certificate that was just created and select Add Certificate -> New Certificate....



INTEGRATION GUIDE| JAVA JARSIGNER

Page 18 of 25

8. In the Subject DN tab, set a Common Name for the certificate, such as "Code Signing".

9. Move straight to the V3 Extensions tab, select the "Example Code Signing Certificate" profile, and then
click OK. The Code Signing certificate will be listed now under the Root CA certificate inside of the
Jarsigner Certificate Container.

Issued by an external CA

For this method, the external CA certificate(s) need to be imported into an empty Certificate Container on the
KMES. A Certificate Signing Request (CSR) will then be generated, which the external CA will use to issue a code
signing certificate. The code signing certificate will then be imported into the Certificate Container on the KMES
that contains the external CA certificate.

1. Go to the Certificate Authoritiesmenu and click the Add CA... button at the bottom of the page.

2. In the Certificate Authority dialog, enter a name for the Certificate Container, such as "Jarsigner". Set the
owner field to the group that contains the user created in section 7.2.3, then click OK. The new Certificate
Container will be listed now in the Certificate Authorities menu.

3. Right-click on the Jarsigner Certificate Container and select Import -> Certificate(s).... This will open the
Import Certificates dialog.

4. Click the Add... button in the bottom left-hand portion of the dialog, then find and select the external CA
certificate(s) that will be issuing the code signing certificate in the file browser. The CA certificate(s) will
populate in the Verified section of the Import Certificates dialog.

5. Click OK to save. The external CA certificate(s) should be listed now in tree form under the Jarsigner
Certificate Container.

6. Next, we'll create a placeholder code signing certificate, from which a CSR can be generated. Right-click
on the lowest level CA certificate in the tree and select Add Certificate -> Pending.... This will open the
Create X.509 Certificate dialog.

7. In the Subject DN tab, set a Common Name for the certificate, such as "Code Signing".

8. In the V3 Extensions tab, select the "Example Code Signing Certificate" profile.

9. Click OK. The Code Signing placeholder certificate will be listed now under the external CA certificate(s).

10. Right-click on placeholder Code Signing certificate and select Export -> Signing Request.... This will open
the Create PKCS #10 Request dialog.

11. Leave all of the settings in the Subject DN tab as the default values.

12. In the V3 Extensions tab, select the "Example Code Signing Certificate" profile.

13. In the PKCS #10 Info tab, specify a save location for the CSR, then click OK. There should be a message
stating that the certificate signing request was successfully written to the location you specified.

14. The CSR file then needs to be taken to an external certificate authority. Using the CSR, the external CA will
issue a code signing certificate.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 19 of 25

NOTE: After the external CA issues the code signing certificate, it needs to be copied to the storage
medium that is configured on the KMES.

15. In the Certificate Authoritiesmenu on the KMES, right-click on the placeholder Code Signing certificate
and select Replace -> With Signed Certificate.... This will open the Import Certificates dialog.

16. Click the Add... button in the bottom left-hand portion of the dialog, then find and select the externally
signed code signing certificate in the file browser. The code signing certificate will populate under the CA
certificate(s) in the Verified section of the Import Certificates dialog.

17. Click OK to save.

[7.2.6] Apply an Issuance Policy to the Jarsigner code signing certificate

1. Go to the Certificate Authoritiesmenu.

2. Right-click on the Code Signing certificate and select Issuance Policy -> Add...

3. Under the Basic Info tab:

l Set Approvals to 0 to allow anonymous signing.

l Select any hashes that you wish to allow.

NOTE: Specifying an Alias is not required.

4. In the X.509 tab, set the Default approval group to Jarsigner.

5. In the Object Signing tab, select the Allow object signing checkbox.

6. Click OK to apply the Issuance Policy to the Jarsigner code signing certificate.

[7.2.7] Create a Jarsigner Application Key Group

1. Select Application Keys in the left menu, then click the Add Application Key Group... button at the bottom
of the page. This will open the Application Key Group dialog.

2. Select Futurex Data Protection in the Service dropdown.

3. Specify a name for the Application Key Group, such as "Jarsigner Key Group".

4. In the Key Length dropdown, select 2048 bits.

5. Click OK to finish creating the Jarsigner Application Key Group.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 20 of 25

[8] EDIT THE FUTUREX PKCS #11 CONFIGURATION FILE

[8.1] DEFINE CONNECTION INFORMATION
The fxpkcs11.cfg file allows the user to set the FXPKCS11 library to connect to the KMES Series 3. To edit, run a
text editor as an Administrator and edit the configuration file accordingly. Most notably, the fields shown below
must be set inside the <KMS> section (note that the full fxpkcs11.cfg file is not included).

NOTE: Our PKCS #11 library expects the PKCS #11 config file to be in a certain location (C:\Program
Files\Futurex\fxpkcs11\fxpkcs11.cfg for Windows and /etc/fxpkcs11.cfg for Linux), but that location can be
overwritten using an environment variable (FXPKCS11_CFG).

<KMS>
# Which PKCS11 slot
<SLOT> 0 </SLOT>

# Login username
<CRYPTO-OPR> crypto1 </CRYPTO-OPR>

# Connection information
<ADDRESS> 10.0.8.30 </ADDRESS>
<PROD-PORT> 2001 </PROD-PORT>
<PROD-TLS-ENABLED> YES </PROD-TLS-ENABLED>
<PROD-TLS-ANONYMOUS> NO </PROD-TLS-ANONYMOUS>
<PROD-TLS-CA> /home/bbarrows/tls/root.pem </PROD-TLS-CA>
<PROD-TLS-KEY> /home/bbarrows/tls/signed_jarsigner_cert.p12 </PROD-TLS-KEY>
<PROD-TLS-KEY-PASS> safest </PROD-TLS-KEY-PASS>

# YES = This is communicating through a Guardian
<FX-LOAD-BALANCE> NO </FX-LOAD-BALANCE>

</KMS>

The <SLOT> field can be left as the default value of 0.

In the <CRYPTO-OPR> field, specify the name of user that was created on the KMES in section 7.2.3.

In the <ADDRESS> field, specify the IP of the KMES that the PKCS #11 library should connect to.

In the <PROD-PORT> field, set the PKCS #11 library to connect to the default Host API port on the KMES, port
2001.

The <PROD-TLS-ENABLED> field needs to be set to "YES" because the only way to connect to the Host API port
on the KMES is over TLS.

The <PROD-TLS-ANONYMOUS> field defines whether the PKCS #11 library will be authenticating to the KMES or
not. Since we're connecting to the Host API port, this value must be set to "NO".

The location of the CA certificate/s needs to be defined with one or more instances of the <PROD-TLS-CA> tag.
In this example, there is only one CA certificate.

The <PROD-TLS-KEY> tag defines the location of the client private key. Supported formats for the TLS private key
are PKCS #1 clear private keys, PKCS #8 encrypted private keys, or a PKCS #12 file that contains the private key
and certificates encrypted under the password specified in the <PROD-TLS-KEY-PASS> field. For this integration,
in the <PROD-TLS-KEY> tag, we're specifying the location of the signed Jarsigner certificate that was exported



INTEGRATION GUIDE| JAVA JARSIGNER

Page 21 of 25

from the KMES as PKCS #12 file in section 7.1.8. In the <PROD-TLS-KEY-PASS> tag, we're specifying the password
of that PKCS #12 file.

If a Guardian is being used to manage KMES Series 3 devices in a cluster, the <FX-LOAD-BALANCE> field must be
defined as “YES”. If a Guardian is not being used it should be set to “NO”.

For additional details, reference the Futurex PKCS #11 technical reference found on the Futurex Portal.

Once the fxpkcs11.cfg file is edited, run the PKCS11Manager file to test the connection against the KMES, and
check the fxpkcs11.log for errors and information. For more information, see our Administrator’s Guide.



INTEGRATION GUIDE| JAVA JARSIGNER

Page 22 of 25

[9] JARSIGNER COMMAND EXAMPLES
As mentioned in the Document Information section at the beginning of the guide, Java's jarsigner tool is
used for two purposes:

1. To sign Java ARchive (JAR) files.

2. To verify the signatures and integrity of signed JAR files.

Examples of both are provided in the subsections that follow.

[9.1] SIGNING A JAVA ARCHIVE (JAR) FILE
Before attempting to sign a Java ARchive (JAR) file, it is a good practice to run the following keytool command
to ensure that the keys stored on the KMES needed for signing are accessible:

$ keytool -keystore NONE -storetype PKCS11 -list

The response should be similar to the following:

Keystore type: PKCS11
Keystore provider: Futurex

Your keystore contains 3 entries

Jarsigner:Code Signing:C, PrivateKeyEntry,

Certificate fingerprint (SHA-256):
A6:9B:22:A7:0B:D0:59:57:80:EE:AD:61:9D:FC:41:9F:CE:5D:32:9B:32:E0:3C:D3:86:56:DC:24:02:CE:8E:B1

Jarsigner:Code Signing:PK, SecretKeyEntry,

Jarsigner:Root:C, trustedCertEntry,

Certificate fingerprint (SHA-256):
5F:D9:42:15:80:31:CF:07:17:7C:28:CC:F8:A8:CD:6A:11:ED:B5:93:9F:7B:D4:1B:B7:DE:AB:D0:28:53:E9:A9

Now that we've confirmed the keys needed for code signing are accessible, run the following command to sign a
JAR file using the KMES-stored keys (NOTE: The command needs to be run from the same directory where the
example.jar file is stored.):

$ jarsigner -keystore NONE -storetype PKCS11 -signedjar demo_signed.jar example.jar "Jarsigner:Code
Signing:C"

NOTE: The last field in the jarsigner command above, "Jarsigner:Code Signing:C" (i.e., "Certificate Container
Name:Code Signing Certificate Name:C"), is the format required for the FXPKCS11 library to be able to find the
keys needed for code signing on the KMES. If the certificate container and code signing certificate were named
differently than outlined in section 7.2.5, modify the above jarsigner command accordingly. The "C" value at the
end of the last field needs to be included, as shown, due to required formatting.

The command will prompt for the passphrase of the keystore. Type in the password of the user that is
configured in the FXPKCS11 configuration file, then click Enter.

If the signing is successful, the response will include a confirmation message that says, "jar signed.".



INTEGRATION GUIDE| JAVA JARSIGNER

Page 23 of 25

NOTE: Please refer to Oracle's documentation regarding other flags that can be used in the jarsigner command
above, such as -tsa and -tsacert.

[9.2] VERIFYING THE SIGNATURE OF A SIGNED JAR FILE
The signed JAR file that was output from the jarsigner command in the previous subsection was called
demo_signed.jar. Now, run the following command to verify the signature of that file.

$ jarsigner -verify demo_signed.jar -verbose -certs

If the verification is successful, the response will include a confirmation message that says, "jar verified.".



INTEGRATION GUIDE| JAVA JARSIGNER

Page 24 of 25

APPENDIX A: XCEPTIONAL SUPPORT

In today’s high-paced environment, we know you are looking for timely and effective resolutions for your
mission-critical needs. That is why our Xceptional Support Team does whatever it takes to ensure you have the
best experience and support possible. Every time. Guaranteed.

l 24x7x365 mission critical support
l Level 1 to level 3 support
l Extremely knowledgeable subject matter experts

At Futurex, we strive to supply you with the latest data encryption innovations as well as our best-in-class
support services. Our Xceptional Support Team goes above and beyond to meet your needs and provide you
with exclusive services that you cannot find anywhere else in the industry.

l Technical Services
l Onsite Training
l Virtual Training
l Customized Consulting
l Customized Software Solutions
l Secure Key Generation, Printing, and Mailing
l Remote Key Injection
l Certificate Authority Services

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

mailto:support@futurex.com


ENGINEERING CAMPUS

864 Old Boerne Road

Bulverde, Texas, USA 78163

Phone: +1 830-980-9782

+1 830-438-8782

E-mail: info@futurex.com

XCEPTIONAL SUPPORT

24x7x365

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

SOLUTIONS ARCHITECT

E-mail: solutions@futurex.com

mailto:info@futurex.com
mailto:support@futurex.com
mailto:solutions@futurex.com

	[1]  Document Information
	[1.1] Document Overview
	[1.2] About Java Jarsigner

	[2] Prerequisites
	[3] Install Futurex PKCS #11 (FXPKCS11)
	[3.1] Instructions for installing the FXPKCS11 Module Using FXTools in Windows
	[3.2] Instructions For Installing the FXPKCS11 module in Linux

	[4] Setting system environment variables for the Java Library
	[5] Install FXJCE files
	[6] Registering the Java Provider
	[7] KMES Series 3 configuration
	[7.1] Configure TLS communication between the KMES Series 3 and the computer where jarsigner and FXPKCS11 are installed
	[7.2] General KMES Configurations for communication between Jarsigner/FXPKCS11 and the KMES Series 3

	[8] Edit the Futurex PKCS #11 Configuration File
	[8.1] define Connection Information

	[9] Jarsigner Command Examples
	[9.1] Signing a Java ARchive (JAR) file
	[9.2] Verifying the signature of a signed JAR file

	APPENDIX A: XCEPTIONAL SUPPORT

