Utilities and Smart Grid

Critical infrastructure security

Secure devices, secure infrastructure

Utilities and smart grid cybersecurity

The network of devices that form the smart grid enables utility providers to tailor power generation to power consumption. Utility providers gain efficiency while consumers reduce waste. However, connected devices entail data endpoints, where data is transmitted from one device to another. Futurex provides cryptography that you can deploy quickly and manage easily to secure all endpoints. Our solutions protect data in transit and at rest from natural disasters and cyber threats of any scale.

  • HSMs that handle any kind of encryption on any scale
  • Key management servers that establish CA and PKI for digital signing
  • Cryptographic management modules used for load balancing, device grouping, failover
  • Deployable on-premises, in the cloud, or as a hybrid model
  • Fully redundant with automated failover, disaster recovery, tamper-responsivity
Talk to an expertExplore solutions
Sensitive info: CEUD

Connected devices such as smart meters monitor consumer energy usage data (CEUD) within buildings. Smart meters send CEUD to processing hubs that analyze the data to update utility provider operations in real-time.

Sensitive info: PII

Utility companies store personally identifiable information (PII) about their customers, such as names, phone numbers, and billing details. With the CEUD captured from smart meters, PII is a high-value target for cybercriminals.

The challenges facing utilities and smart grid cybersecurity

Utility companies and smart meter manufacturers are charged with securing highly sensitive information. Consumer energy usage data (CEUD) is passively captured from residences and businesses, while customers’ personally identifiable information (PII) is actively captured. Utility companies must secure the various endpoints used by connected devices and store data to prevent tampering and enable disaster recovery. Of equal importance is device management, especially when dealing with vast infrastructures.

  • Secure numerous data endpoints of networked devices like smart meters
  • Manage networks of connected devices in an efficient way
  • Protect CEUD and PII stored within databases
  • Harden infrastructure against tampering, cyber attacks, and natural disasters

Futurex solutions for utilities and smart grid cybersecurity

Futurex provides every type of encryption, key management, certificate management, and cryptographic management through our market-leading HSMs, key management servers, and cryptographic management modules. We offer flexible deployment: on-premises, in the cloud, or using a hybrid of both. This helps utility providers and device manufacturers to address specific use cases or design entirely new infrastructure. Futurex solutions make it easy to establish the public key infrastructure (PKI) and certificate authority (CA) to create a network of trusted devices.

  • Key management servers: encryption key lifecycle management
  • Certificate authority (CA): establish PKI, digitally sign objects, and manage certificates
  • Central device management with user-definable groups and load balancing
  • HSMs with logical and physical controls like role-based permissions and tamper-responsivity
Asymmetric encryption

Futurex key management servers use a certificate authority to generate asymmetric key pairs: a public and private key. This allows devices like smart meters to transmit data over public networks like the internet by using a public key.

Learn about database encryption
Universal compliance

All Futurex HSMs are FIPS 140-2 Level 3 certified and meet the highest levels of compliance. With both physical and logical security controls built in, Futurex HSMs are recognized as secure cryptographic devices (SCDs).

See our cryptographic architecture
Enterprise key management

The Futurex key management servers manage key lifecycles. They secure private keys, forming the basis for public key infrastructure (PKI) and an offline root certificate authority (CA). This enables device and code signing.

Our key management servers

In the cloud, on-premises, or a hybrid of both: Futurex delivers tailored cryptographic solutions to fit your business needs.


Any cryptographic function. Any size. Any scale. Any location.

Get started

Explore utilities & smart grid solutions

Certificate authority (CA)

IoT device manufacturers can use Futurex enterprise key management servers to establish a PKI to secure private keys and create an offline root certificate authority (CA). The offline root certificate establishes a working certificate that can digitally sign smart meters and code and can authenticate CEUD to prevent unauthorized access to utility networks of IoT devices. Like the PKI, having a CA in your security infrastructure is essential to protecting connected utility devices and mitigating cybersecurity vulnerabilities.

Public key infrastructure (PKI)

A Public Key Infrastructure allows users or devices to securely transmit sensitive data over insecure public spaces such as the internet, using asymmetric key pairs consisting of a public and private key. The data is transmitted with a public key and then decrypted with the private key in a secure environment. The PKI encrypts and authenticates this data, enabling the receiving entity to trust the integrity of the data.

Public key infrastructures use public and private key pairs generated and distributed by a trusted device known as a certificate authority (CA). Certificate authorities, often validated by third-party auditors, generate digital certificates and assign them to the electronic devices that make up the PKI.

IoT signing

A certificate authority (CA) forms the root of trust within a cryptographic infrastructure. The CA can digitally sign objects with cryptographic signatures to validate data and devices. Devices on both the sending and receiving ends are authorized under a common certificate tree to share data, such as smart meter configurations.


Tokenization replaces sensitive data with a string of identifying characters, known as tokens, for storage. Two common approaches to tokenizing data are hash-based message authentication code (HMAC) and encryption-based. Users prefer the encryption method in cases where they need to reverse the tokenization for any reason. Tokenization effectively removes the burden of multiple parties storing sensitive data in the clear while still allowing easy access to authorized applications and users.

Futurex utilities & smart grid solutions portfolio

IoT Signing
Create a CA and PKI to secure your IoT devices from the floor or the field with digital certificates and signatures.
Issuing CA
Protect an issuing CA by using hardware-based key management solutions with PKI functionality and third-party integration.
Code Signing
Securely distribute code and establish trust between apps with on-premises and cloud HSMs and turnkey solutions.
Offline Root CA
Take advantage of an all-in-one solution to guarantee the integrity of your PKI with a secure, offline root CA.

Want to learn more?

Contact a Solutions Architect today.

Give us a call